
7. Dependency Parsing
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
September 16, 2025
*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University

Table of contents

1. Syntactic structure

2. Dependency grammar

3. Dependency parsing

4. Neural dependency parsing

5. Wrap-up

1

Review

Review

• GloVe
• Artificial neural network
• Perceptrons
• MLP
• Gradient descendant and loss function
• Backpropagation

2

Review: GloVe

Find word vectors 𝑤⃗ice, 𝑤⃗steam such that:

(𝑤⃗ice − 𝑤⃗steam) ⋅ 𝑤⃗𝑥 ≈ log 𝑃(𝑥 ∣ ice)
𝑃 (𝑥 ∣ steam)

3

Review: Perceptron

4

Review: MLP

• activation function
• optimization
• algorithm

5

Review: Gradient descent

6

Review: Gradient descent

Gradient descent learning rule:

𝑤new = 𝑤current − 𝜂 ⋅ 𝜕𝐿
𝜕𝑤

• 𝜂: learning rate
• 𝐿: loss function
• 𝜕𝐿

𝜕𝑤 : gradient of the loss function with respect to weight

7

Review: Learning rule

1. Feedforward: compute outputs
2. Loss calculation: evaluate error
3. Backpropagation: propagate errors backward

8

Review: Backpropagation

9

Review: Chain rule

Since this derivative cannot be computed directly, we apply the chain
rule.

10

Lesson plan

Lesson plan

• Syntactic structure: Consistency and dependency
• Dependency grammar and treebanks
• Dependency parsing
• Transition-based dependency parsing
• Neural dependency parsing

11

Syntactic structure

Understanding linguistic structure

• So far, we have focused on how NLP deals with word meanings.

• But natural language understanding goes beyond individual
words.

• Linguistic structure is equally important for capturing how
words combine together to create meaning.

12

Understanding linguistic structure

• So far, we have focused on how NLP deals with word meanings.
• But natural language understanding goes beyond individual
words.

• Linguistic structure is equally important for capturing how
words combine together to create meaning.

12

Understanding linguistic structure

• So far, we have focused on how NLP deals with word meanings.
• But natural language understanding goes beyond individual
words.

• Linguistic structure is equally important for capturing how
words combine together to create meaning.

12

Understanding linguistic structure

A grammar is the system of rules that defines how linguistic
structures are formed and how words relate to each other within a
sentence.

1. Part of Speech (POS)
2. Dependency grammar

13

Understanding linguistic structure

A grammar is the system of rules that defines how linguistic
structures are formed and how words relate to each other within a
sentence.

1. Part of Speech (POS)

2. Dependency grammar

13

Understanding linguistic structure

A grammar is the system of rules that defines how linguistic
structures are formed and how words relate to each other within a
sentence.

1. Part of Speech (POS)
2. Dependency grammar

13

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.

• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.

• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government

• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe

• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful

• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily

• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into

• A___/D___: a, the, some
• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some

• C___: and, or

14

1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.
• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or

14

How do we identify POS?

• Examples:

• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• We usually identify POS by:

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

15

How do we identify POS?

• Examples:
• This car is very interesting.

• This car mooked fast.
• This nony car mooked fast.

• We usually identify POS by:

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

15

How do we identify POS?

• Examples:
• This car is very interesting.
• This car mooked fast.

• This nony car mooked fast.
• We usually identify POS by:

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

15

How do we identify POS?

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• We usually identify POS by:

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

15

How do we identify POS?

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• We usually identify POS by:

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

15

How do we identify POS?

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• We usually identify POS by:
• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

15

How do we identify POS?

• Examples:
• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• We usually identify POS by:
• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)

15

2. From words to phrases

• Words combine into constituents based on POS:

• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

16

2. From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase

• play games = verb + noun phrase = verb phrase
• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

16

2. From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

16

2. From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence

16

2. From words to phrases

• Words combine into constituents based on POS:
• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:
• Noun Phrase + Verb Phrase = Sentence

16

Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”

• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

17

Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

17

Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories

• Grammatically well-formed

• Syntax is about structure, not always meaning.

17

Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

17

Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”
• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.

17

Understanding linguistic structure 1: Constituency

• Constituency grammar

• A linguistic theory that analyzes sentences as nested
constituents (e.g., noun phrases, verb phrases).

• Also known as phrase structure grammar

18

Understanding linguistic structure 1: Constituency

• Constituency grammar
• A linguistic theory that analyzes sentences as nested
constituents (e.g., noun phrases, verb phrases).

• Also known as phrase structure grammar

18

Understanding linguistic structure 1: Constituency

• Constituency grammar
• A linguistic theory that analyzes sentences as nested
constituents (e.g., noun phrases, verb phrases).

• Also known as phrase structure grammar

18

Frameworks for analyzing grammar

• Linguists formalize sentence structure using grammar
frameworks:

• Phrase Structure Grammar

(linguistics)
• Dependency Grammar (widely used in NLP)

19

Frameworks for analyzing grammar

• Linguists formalize sentence structure using grammar
frameworks:

• Phrase Structure Grammar (linguistics)

• Dependency Grammar (widely used in NLP)

19

Frameworks for analyzing grammar

• Linguists formalize sentence structure using grammar
frameworks:

• Phrase Structure Grammar (linguistics)
• Dependency Grammar (widely used in NLP)

19

Understanding linguistic structure 2: Dependency

• Dependency grammar

• It postulates that syntactic structure consists of relationships
between lexical items, normally binary asymmetric relations
(“arrows”) called dependencies.

• Dependency structure shows which words depend on (modify,
attach to, or are arguments of) which other words.

20

Understanding linguistic structure 2: Dependency

• Dependency grammar
• It postulates that syntactic structure consists of relationships
between lexical items, normally binary asymmetric relations
(“arrows”) called dependencies.

• Dependency structure shows which words depend on (modify,
attach to, or are arguments of) which other words.

20

Understanding linguistic structure 2: Dependency

• Dependency grammar
• It postulates that syntactic structure consists of relationships
between lexical items, normally binary asymmetric relations
(“arrows”) called dependencies.

• Dependency structure shows which words depend on (modify,
attach to, or are arguments of) which other words.

20

Why do we need dependency structure?

• Humans communicate complex ideas by composing words
together into bigger units into convey complex meanings.

• Readers/Listeners/NLP models need to work out what modifies
(attaches to) what.

• e.g., I saw the man with the telescope

21

Why do we need dependency structure?

• Humans communicate complex ideas by composing words
together into bigger units into convey complex meanings.

• Readers/Listeners/NLP models need to work out what modifies
(attaches to) what.

• e.g., I saw the man with the telescope

21

Why do we need dependency structure?

• Humans communicate complex ideas by composing words
together into bigger units into convey complex meanings.

• Readers/Listeners/NLP models need to work out what modifies
(attaches to) what.

• e.g., I saw the man with the telescope

21

More example: Prepositional phrase attachment ambiguity

22

More example: Prepositional phrase attachment ambiguity

Sourced from: https://www.bbc.com/news/science-environment-46046264

23

https://www.bbc.com/news/science-environment-46046264

More example: Coordination phrase attachment ambiguity

• No heart, no cognitive issues?
• No heart, but cognitive issues?

24

More example: Coordination phrase attachment ambiguity

• No heart, no cognitive issues?
• No heart, but cognitive issues?

24

More example: Adjectival/Adverbial modifier ambiguity

25

More example: Verb phrase (VP) attachment ambiguity

26

Dependency paths help extract semantic interpretation

Coming back to the example:
I saw the man with the telescope.

27

Dependency grammar

Dependency grammar and dependency structure

Dependency grammar shows that syntactic structure (of a sentence)
consists of relations between lexical items, normally binary
asymmetric relations (“arrows”) called dependencies.

Sourced from: De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197–218. Figure 1.

• The arrows are commonly typed with the name of grammatical
relations (subject, prepositional object, adverb, etc.)

• Usually, dependencies form a tree (a connected acyclic,
single-root graph)

28

Dependency grammar and dependency structure

Dependency grammar shows that syntactic structure (of a sentence)
consists of relations between lexical items, normally binary
asymmetric relations (“arrows”) called dependencies.

Sourced from: De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197–218. Figure 1.

• The arrows are commonly typed with the name of grammatical
relations (subject, prepositional object, adverb, etc.)

• Usually, dependencies form a tree (a connected acyclic,
single-root graph)

28

Dependency grammar vs. Constituency parsing

29

Short history of dependency grammar/parsing

• The idea of dependency structures goes back a long way
• Pāṇini was an ancient Indian grammarian, active around the 4th to
6th century BCE, who authored the Aṣṭādhyāyī (”Eight Chapters”), a
formal system that systematically describes the grammar of
Classical Sanskrit.

• Basic approach to 1st millennium Arabic grammarians
• Constituency/CFG is a new-frangled invention

• 20th centry invention (R. S. Wells, 1947; Chomsky, 1953, etc.)
• Modern dependency work is often sourced to Lucien Tesnière
(1959)

• Was dominant approach in “East” in 20th century (Russia, China, ...)
• Good gor free-er word order, inflected languages

• Used in some of the earliest parsers in NLP, even in the US:
• David Hays, one of the founders of U.S. computational linguistics,
built early dependency parsers (Hays, 1962) and published on
dependency gramamr in Language

30

The arise of annotated data & Universal Dependencies tree

What is a treebank? An annotated corpus that includes syntactic or
morphological structure, often in the form of parse trees.

Milestones in treebank development:

• Brown corpus (1967): First general-purpose corpus;
part-of-speech (PoS) tagged in 1979

• Lancaster-IBM treebank (Late 1980s): One of the first
syntactically annotated corpora

• The Penn treebank (Marcus et al., 1993): Influential
constituency-based treebank for English

• Universal Dependencies (UD): A multilingual, cross-linguistically
consistent treebank project using dependency grammar

31

The arise of annotated data & Universal Dependencies tree

What is a treebank? An annotated corpus that includes syntactic or
morphological structure, often in the form of parse trees.

Milestones in treebank development:

• Brown corpus (1967): First general-purpose corpus;
part-of-speech (PoS) tagged in 1979

• Lancaster-IBM treebank (Late 1980s): One of the first
syntactically annotated corpora

• The Penn treebank (Marcus et al., 1993): Influential
constituency-based treebank for English

• Universal Dependencies (UD): A multilingual, cross-linguistically
consistent treebank project using dependency grammar

31

The arise of annotated data & Universal Dependencies tree

What is a treebank? An annotated corpus that includes syntactic or
morphological structure, often in the form of parse trees.

Milestones in treebank development:

• Brown corpus (1967): First general-purpose corpus;
part-of-speech (PoS) tagged in 1979

• Lancaster-IBM treebank (Late 1980s): One of the first
syntactically annotated corpora

• The Penn treebank (Marcus et al., 1993): Influential
constituency-based treebank for English

• Universal Dependencies (UD): A multilingual, cross-linguistically
consistent treebank project using dependency grammar

31

The arise of annotated data & Universal Dependencies tree

What is a treebank? An annotated corpus that includes syntactic or
morphological structure, often in the form of parse trees.

Milestones in treebank development:

• Brown corpus (1967): First general-purpose corpus;
part-of-speech (PoS) tagged in 1979

• Lancaster-IBM treebank (Late 1980s): One of the first
syntactically annotated corpora

• The Penn treebank (Marcus et al., 1993): Influential
constituency-based treebank for English

• Universal Dependencies (UD): A multilingual, cross-linguistically
consistent treebank project using dependency grammar

31

The arise of annotated data & Universal Dependencies tree

What is a treebank? An annotated corpus that includes syntactic or
morphological structure, often in the form of parse trees.

Milestones in treebank development:

• Brown corpus (1967): First general-purpose corpus;
part-of-speech (PoS) tagged in 1979

• Lancaster-IBM treebank (Late 1980s): One of the first
syntactically annotated corpora

• The Penn treebank (Marcus et al., 1993): Influential
constituency-based treebank for English

• Universal Dependencies (UD): A multilingual, cross-linguistically
consistent treebank project using dependency grammar

31

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful
than writing a grammar (by hand)

But a treebank gives us many things:

• Reusability of the labor

• Many parser, POS taggers, and built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information
• A way to evaluate NLP systems (work as a benchmark for
empirical science)

32

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful
than writing a grammar (by hand)

But a treebank gives us many things:

• Reusability of the labor
• Many parser, POS taggers, and built on it

• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information
• A way to evaluate NLP systems (work as a benchmark for
empirical science)

32

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful
than writing a grammar (by hand)

But a treebank gives us many things:

• Reusability of the labor
• Many parser, POS taggers, and built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information
• A way to evaluate NLP systems (work as a benchmark for
empirical science)

32

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful
than writing a grammar (by hand)

But a treebank gives us many things:

• Reusability of the labor
• Many parser, POS taggers, and built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions

• Frequencies and distributional information
• A way to evaluate NLP systems (work as a benchmark for
empirical science)

32

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful
than writing a grammar (by hand)

But a treebank gives us many things:

• Reusability of the labor
• Many parser, POS taggers, and built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information

• A way to evaluate NLP systems (work as a benchmark for
empirical science)

32

The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful
than writing a grammar (by hand)

But a treebank gives us many things:

• Reusability of the labor
• Many parser, POS taggers, and built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information
• A way to evaluate NLP systems (work as a benchmark for
empirical science)

32

Dependency parsing

Sources of information for dependency parsing

How do we build a parser, once we get the dependency information?

What are the sources of information for dependency parsing?

33

Sources of information for dependency parsing

1. Bilexical affinities
• Which word pairs typically attach? (e.g., eat → pizza)
• Use word–word statistics or embeddings to score candidate arcs.

2. Dependency distance

• Shorter arcs are preferred; long spans are penalized.
• Implement via absolute token distance or distance buckets.

3. Intervening material

• Penalize arcs that span intervening verbs or punctuation.
• Verbs and commas often mark clause/phrase boundaries.

4. Valency of heads

• Heads have typical patterns (e.g., V: subject on the left, object on
the right; P: one object to the right).

• Track how many left/right dependents are already attached to
avoid overfilling a head.

34

Sources of information for dependency parsing

1. Bilexical affinities
• Which word pairs typically attach? (e.g., eat → pizza)
• Use word–word statistics or embeddings to score candidate arcs.

2. Dependency distance
• Shorter arcs are preferred; long spans are penalized.
• Implement via absolute token distance or distance buckets.

3. Intervening material

• Penalize arcs that span intervening verbs or punctuation.
• Verbs and commas often mark clause/phrase boundaries.

4. Valency of heads

• Heads have typical patterns (e.g., V: subject on the left, object on
the right; P: one object to the right).

• Track how many left/right dependents are already attached to
avoid overfilling a head.

34

Sources of information for dependency parsing

1. Bilexical affinities
• Which word pairs typically attach? (e.g., eat → pizza)
• Use word–word statistics or embeddings to score candidate arcs.

2. Dependency distance
• Shorter arcs are preferred; long spans are penalized.
• Implement via absolute token distance or distance buckets.

3. Intervening material
• Penalize arcs that span intervening verbs or punctuation.
• Verbs and commas often mark clause/phrase boundaries.

4. Valency of heads

• Heads have typical patterns (e.g., V: subject on the left, object on
the right; P: one object to the right).

• Track how many left/right dependents are already attached to
avoid overfilling a head.

34

Sources of information for dependency parsing

1. Bilexical affinities
• Which word pairs typically attach? (e.g., eat → pizza)
• Use word–word statistics or embeddings to score candidate arcs.

2. Dependency distance
• Shorter arcs are preferred; long spans are penalized.
• Implement via absolute token distance or distance buckets.

3. Intervening material
• Penalize arcs that span intervening verbs or punctuation.
• Verbs and commas often mark clause/phrase boundaries.

4. Valency of heads
• Heads have typical patterns (e.g., V: subject on the left, object on
the right; P: one object to the right).

• Track how many left/right dependents are already attached to
avoid overfilling a head.

34

Methods of dependency parsing

There are several ways (including dynamic programming, graph
algorithms, etc.) but we’ll focus on greedy transition-based parsing
(Nivre, 2003).

35

1. Greedy transition-based parsing

Idea:

• Stack: Words that are being processed (“currently thinking about
these”)

• Buffer: Words yet to be processed (“still to come”)
• Transitions: Actions that manipulate the stack and build
syntactic relationships

• Regulation (ROOT):

• ROOT can never be a dependent.
• Exactly one root arc per sentence: root(ROOT, sentential head).

36

1. Greedy transition-based parsing

Idea:

• Stack: Words that are being processed (“currently thinking about
these”)

• Buffer: Words yet to be processed (“still to come”)

• Transitions: Actions that manipulate the stack and build
syntactic relationships

• Regulation (ROOT):

• ROOT can never be a dependent.
• Exactly one root arc per sentence: root(ROOT, sentential head).

36

1. Greedy transition-based parsing

Idea:

• Stack: Words that are being processed (“currently thinking about
these”)

• Buffer: Words yet to be processed (“still to come”)
• Transitions: Actions that manipulate the stack and build
syntactic relationships

• Regulation (ROOT):

• ROOT can never be a dependent.
• Exactly one root arc per sentence: root(ROOT, sentential head).

36

1. Greedy transition-based parsing

Idea:

• Stack: Words that are being processed (“currently thinking about
these”)

• Buffer: Words yet to be processed (“still to come”)
• Transitions: Actions that manipulate the stack and build
syntactic relationships

• Regulation (ROOT):

• ROOT can never be a dependent.
• Exactly one root arc per sentence: root(ROOT, sentential head).

36

1. Greedy transition-based parsing

Idea:

• Stack: Words that are being processed (“currently thinking about
these”)

• Buffer: Words yet to be processed (“still to come”)
• Transitions: Actions that manipulate the stack and build
syntactic relationships

• Regulation (ROOT):
• ROOT can never be a dependent.

• Exactly one root arc per sentence: root(ROOT, sentential head).

36

1. Greedy transition-based parsing

Idea:

• Stack: Words that are being processed (“currently thinking about
these”)

• Buffer: Words yet to be processed (“still to come”)
• Transitions: Actions that manipulate the stack and build
syntactic relationships

• Regulation (ROOT):
• ROOT can never be a dependent.
• Exactly one root arc per sentence: root(ROOT, sentential head).

36

1. Greedy transition-based parsing

Formal definition:

• 𝜎: Stack, 𝛽: Buffer, 𝐴: Set of dependency arcs
• Initial state: 𝜎 = [ROOT], 𝛽 = [𝑤1, ..., 𝑤𝑛], 𝐴 = ∅
• Goal: Build all arcs and finish when 𝜎 = [𝑤], 𝛽 = ∅

Transitions (can choose one of three actions):

• Shift: (𝜎, 𝑤𝑖|𝛽, 𝐴) ⇒ (𝜎|𝑤𝑖, 𝛽, 𝐴)
• Left-Arc𝑟: (𝜎|𝑤𝑖|𝑤𝑗, 𝛽, 𝐴) ⇒ (𝜎|𝑤𝑗, 𝛽, 𝐴 ∪ {𝑟(𝑤𝑗, 𝑤𝑖)})
• Right-Arc𝑟: (𝜎|𝑤𝑖|𝑤𝑗, 𝛽, 𝐴) ⇒ (𝜎|𝑤𝑖, 𝛽, 𝐴 ∪ {𝑟(𝑤𝑖, 𝑤𝑗)})

37

Greedy transition-based parsing: Example

Sentence: I saw him

Initial State: Stack = [ROOT], Buffer = [I, saw, him], Arcs = {}

Step Stack Buffer Transition New Arc
1 [ROOT] [I, saw, him] SHIFT —
2 [ROOT, I] [saw, him] SHIFT —
3 [ROOT, I, saw] [him] LEFT-ARC saw → I (subj)
4 [ROOT, saw] [him] SHIFT —
5 [ROOT, saw, him] [] RIGHT-ARC saw → him (obj)
6 [ROOT, saw] [] RIGHT-ARC ROOT → saw (root)

38

MaltParser (Nivre and Hall, 2005)

• Problem: How do we choose the next parsing action?

• Answer: Stand back — I know machine learning! Train a classifier
that learns to predict the best transition at each step in a greedy
dependency parser.

• Each transition is predicted by a multi-class classifier (e.g.,
softmax or perceptron) over the set of legal moves.

• Trained features: Top word on the stack (and its POS tag), First
word in the buffer (and its POS tag), Arc history, etc.

39

MaltParser (Nivre and Hall, 2005)

• Problem: How do we choose the next parsing action?
• Answer: Stand back — I know machine learning! Train a classifier
that learns to predict the best transition at each step in a greedy
dependency parser.

• Each transition is predicted by a multi-class classifier (e.g.,
softmax or perceptron) over the set of legal moves.

• Trained features: Top word on the stack (and its POS tag), First
word in the buffer (and its POS tag), Arc history, etc.

39

MaltParser (Nivre and Hall, 2005)

• Problem: How do we choose the next parsing action?
• Answer: Stand back — I know machine learning! Train a classifier
that learns to predict the best transition at each step in a greedy
dependency parser.

• Each transition is predicted by a multi-class classifier (e.g.,
softmax or perceptron) over the set of legal moves.

• Trained features: Top word on the stack (and its POS tag), First
word in the buffer (and its POS tag), Arc history, etc.

39

MaltParser (Nivre and Hall, 2005)

• Problem: How do we choose the next parsing action?
• Answer: Stand back — I know machine learning! Train a classifier
that learns to predict the best transition at each step in a greedy
dependency parser.

• Each transition is predicted by a multi-class classifier (e.g.,
softmax or perceptron) over the set of legal moves.

• Trained features: Top word on the stack (and its POS tag), First
word in the buffer (and its POS tag), Arc history, etc.

39

MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.
• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.

40

MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.
• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.

40

MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.

• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.

40

MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.
• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.

40

MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.
• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.

40

MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.
• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.

40

MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.
• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.

40

Evaluation

Gold Standard: Hand-annotated syntactic structure used for
evaluating parser output.

Metrics: (1) UAS (Unlabeled Attachment Score): Correct head only; (2)
LAS (Labeled Attachment Score): Correct head and label

Example:

Word Gold Head Gold Label Pred Head Pred Label
She 2 nsubj 2 nsubj
likes 0 root 0 root

chocolate 2 obj 2 nmod
very 4 advmod 4 advmod
much 2 advmod 4 advmod

Evaluation:

• Total dependencies: 5
• Correct heads (UAS): 4 → UAS = 4/5 = 80%
• Correct heads + labels (LAS): 3 → LAS = 3/5 = 60%

41

Evaluation

Gold Standard: Hand-annotated syntactic structure used for
evaluating parser output.

Metrics: (1) UAS (Unlabeled Attachment Score): Correct head only; (2)
LAS (Labeled Attachment Score): Correct head and label

Example:

Word Gold Head Gold Label Pred Head Pred Label
She 2 nsubj 2 nsubj
likes 0 root 0 root

chocolate 2 obj 2 nmod
very 4 advmod 4 advmod
much 2 advmod 4 advmod

Evaluation:

• Total dependencies: 5
• Correct heads (UAS): 4 → UAS = 4/5 = 80%
• Correct heads + labels (LAS): 3 → LAS = 3/5 = 60%

41

Evaluation

Gold Standard: Hand-annotated syntactic structure used for
evaluating parser output.

Metrics: (1) UAS (Unlabeled Attachment Score): Correct head only; (2)
LAS (Labeled Attachment Score): Correct head and label

Example:

Word Gold Head Gold Label Pred Head Pred Label
She 2 nsubj 2 nsubj
likes 0 root 0 root

chocolate 2 obj 2 nmod
very 4 advmod 4 advmod
much 2 advmod 4 advmod

Evaluation:

• Total dependencies: 5
• Correct heads (UAS): 4 → UAS = 4/5 = 80%
• Correct heads + labels (LAS): 3 → LAS = 3/5 = 60%

41

Evaluation

Gold Standard: Hand-annotated syntactic structure used for
evaluating parser output.

Metrics: (1) UAS (Unlabeled Attachment Score): Correct head only; (2)
LAS (Labeled Attachment Score): Correct head and label

Example:

Word Gold Head Gold Label Pred Head Pred Label
She 2 nsubj 2 nsubj
likes 0 root 0 root

chocolate 2 obj 2 nmod
very 4 advmod 4 advmod
much 2 advmod 4 advmod

Evaluation:

• Total dependencies: 5
• Correct heads (UAS): 4 → UAS = 4/5 = 80%
• Correct heads + labels (LAS): 3 → LAS = 3/5 = 60% 41

Neural dependency parsing

How do we gain from a neural dependency parser?

Indicator features revisited

• Sparsity: handcrafted feature templates generate very
high‐dimensional but rarely observed indicators (cf. one-hot
encoding)

• Incomplete coverage: cannot anticipate every useful
combination of word, POS, or context

• Engineering cost: manual feature design and extraction
pipelines add development overhead

• Runtime overhead: expensive lookups and feature‐template
evaluations slow parsing

Neural approach: Dense and compact Representations

42

How do we gain from a neural dependency parser?

Indicator features revisited

• Sparsity: handcrafted feature templates generate very
high‐dimensional but rarely observed indicators (cf. one-hot
encoding)

• Incomplete coverage: cannot anticipate every useful
combination of word, POS, or context

• Engineering cost: manual feature design and extraction
pipelines add development overhead

• Runtime overhead: expensive lookups and feature‐template
evaluations slow parsing

Neural approach: Dense and compact Representations

42

How do we gain from a neural dependency parser?

Indicator features revisited

• Sparsity: handcrafted feature templates generate very
high‐dimensional but rarely observed indicators (cf. one-hot
encoding)

• Incomplete coverage: cannot anticipate every useful
combination of word, POS, or context

• Engineering cost: manual feature design and extraction
pipelines add development overhead

• Runtime overhead: expensive lookups and feature‐template
evaluations slow parsing

Neural approach: Dense and compact Representations

42

How do we gain from a neural dependency parser?

Indicator features revisited

• Sparsity: handcrafted feature templates generate very
high‐dimensional but rarely observed indicators (cf. one-hot
encoding)

• Incomplete coverage: cannot anticipate every useful
combination of word, POS, or context

• Engineering cost: manual feature design and extraction
pipelines add development overhead

• Runtime overhead: expensive lookups and feature‐template
evaluations slow parsing

Neural approach: Dense and compact Representations

42

Neural approach: Dense and compact Representations

• Exactly the same parser configuration is used (e.g., top elements
of the stack, front elements of the buffer, and relevant
dependency arcs);

– Instead of hand-crafted binary features, we summarize these
elements into a single continuous “configuration vector.”

• Neural approach: the model learns this dense configuration
automatically
– Embedding layers map words, POS tags, and arc labels into
low-dimensional vectors, which are concatenated to represent
the parser state.

43

Neural approach: Dense and compact Representations

• Exactly the same parser configuration is used (e.g., top elements
of the stack, front elements of the buffer, and relevant
dependency arcs);
– Instead of hand-crafted binary features, we summarize these
elements into a single continuous “configuration vector.”

• Neural approach: the model learns this dense configuration
automatically
– Embedding layers map words, POS tags, and arc labels into
low-dimensional vectors, which are concatenated to represent
the parser state.

43

Neural approach: Dense and compact Representations

• Exactly the same parser configuration is used (e.g., top elements
of the stack, front elements of the buffer, and relevant
dependency arcs);
– Instead of hand-crafted binary features, we summarize these
elements into a single continuous “configuration vector.”

• Neural approach: the model learns this dense configuration
automatically

– Embedding layers map words, POS tags, and arc labels into
low-dimensional vectors, which are concatenated to represent
the parser state.

43

Neural approach: Dense and compact Representations

• Exactly the same parser configuration is used (e.g., top elements
of the stack, front elements of the buffer, and relevant
dependency arcs);
– Instead of hand-crafted binary features, we summarize these
elements into a single continuous “configuration vector.”

• Neural approach: the model learns this dense configuration
automatically
– Embedding layers map words, POS tags, and arc labels into
low-dimensional vectors, which are concatenated to represent
the parser state.

43

A neural dependency parser (Chen & Manning, 2014)

• Review: Distributed representations
• Represent each word as a d-dimensional dense vector (i.e., word
embedding)

• Similar words are expected to have close vectors
• Meanwhile, POS and dependency labels are also represented as
d-dimensional vectors

• The similar discrete sets also exhibit many semantical similarities.
• e.g., NNS (plural noun) should be close to NN (singular noun);
nummod (numerical modifier) should be close to amod (adjective
modifier).

44

A neural dependency parser (Chen & Manning, 2014)

• Review: Distributed representations
• Represent each word as a d-dimensional dense vector (i.e., word
embedding)

• Similar words are expected to have close vectors

• Meanwhile, POS and dependency labels are also represented as
d-dimensional vectors

• The similar discrete sets also exhibit many semantical similarities.
• e.g., NNS (plural noun) should be close to NN (singular noun);
nummod (numerical modifier) should be close to amod (adjective
modifier).

44

A neural dependency parser (Chen & Manning, 2014)

• Review: Distributed representations
• Represent each word as a d-dimensional dense vector (i.e., word
embedding)

• Similar words are expected to have close vectors
• Meanwhile, POS and dependency labels are also represented as
d-dimensional vectors

• The similar discrete sets also exhibit many semantical similarities.
• e.g., NNS (plural noun) should be close to NN (singular noun);
nummod (numerical modifier) should be close to amod (adjective
modifier).

44

A neural dependency parser (Chen & Manning, 2014)

• Review: Distributed representations
• Represent each word as a d-dimensional dense vector (i.e., word
embedding)

• Similar words are expected to have close vectors
• Meanwhile, POS and dependency labels are also represented as
d-dimensional vectors

• The similar discrete sets also exhibit many semantical similarities.

• e.g., NNS (plural noun) should be close to NN (singular noun);
nummod (numerical modifier) should be close to amod (adjective
modifier).

44

A neural dependency parser (Chen & Manning, 2014)

• Review: Distributed representations
• Represent each word as a d-dimensional dense vector (i.e., word
embedding)

• Similar words are expected to have close vectors
• Meanwhile, POS and dependency labels are also represented as
d-dimensional vectors

• The similar discrete sets also exhibit many semantical similarities.
• e.g., NNS (plural noun) should be close to NN (singular noun);
nummod (numerical modifier) should be close to amod (adjective
modifier).

44

Extracting tokens and vector representations from configuration

We can extract a set of tokens based on stack/buffer positions

A concatenation of the vector representation of all these is the
neural representation of configuration. 45

Deep learning classifiers are non-linear classifiers

• A softmax classifier assigns classes 𝑦 ∈ 𝐶 based on inputs
𝑥 ∈ ℝ𝑑 via

𝑝(𝑦 ∣ 𝑥) = exp(𝑊𝑦 ⋅ 𝑥)
𝐶

∑
𝑐=1

exp(𝑊𝑐 ⋅ 𝑥)
.

• We train the weight matrix 𝑊 ∈ ℝ𝐶×𝑑 by minimizing the negative
log‐likelihood (i.e., cross entropy loss):

46

Review: Neural networks are more powerful

• Traditional ML classifiers (Naïve Bayes, SVMs, logistic regression,
softmax) only produce linear decision boundaries.

• Review: Neural networks (with multiple hidden layers) can learn
much more complex, nonlinear decision boundaries.

• In the original input space, the boundary may look nonlinear.
But after the hidden layers transform the data, the final softmax
layer only needs a simple linear classifier to separate the
classes.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

47

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Review: Neural networks are more powerful

• Traditional ML classifiers (Naïve Bayes, SVMs, logistic regression,
softmax) only produce linear decision boundaries.

• Review: Neural networks (with multiple hidden layers) can learn
much more complex, nonlinear decision boundaries.

• In the original input space, the boundary may look nonlinear.
But after the hidden layers transform the data, the final softmax
layer only needs a simple linear classifier to separate the
classes.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

47

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Review: Neural networks are more powerful

• Traditional ML classifiers (Naïve Bayes, SVMs, logistic regression,
softmax) only produce linear decision boundaries.

• Review: Neural networks (with multiple hidden layers) can learn
much more complex, nonlinear decision boundaries.

• In the original input space, the boundary may look nonlinear.
But after the hidden layers transform the data, the final softmax
layer only needs a simple linear classifier to separate the
classes.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

47

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Simple feed-forward neural network multi-class classifier

Model architecture
Input: 𝑥 = [… , embed(𝑤𝑖−1), embed(𝑤𝑖), embed(𝑤𝑖+1), …]
Hidden: ℎ = ReLU(𝑊𝑥 + 𝑏1)
Output: 𝑦 = softmax(𝑈ℎ + 𝑏2)

Training objective (cross-entropy loss) back-propagated

ℒ = − ∑
𝑖

log 𝑝(𝑦(𝑖) ∣ 𝑥(𝑖))

48

Dependency parsing for sentence structure

• Chen and Manning (2014) showed that neural networks can
accurately determine the structure of sentences, supporting
meaning interpretation.

• It was the first simple, successful neural dependency parser.
• The dense representations (and non-linear classifier) let it
outperform other greedy parsers in both accuracy and speed.

• This work was further developed and improved by others.

49

Dependency parsing for sentence structure

• Chen and Manning (2014) showed that neural networks can
accurately determine the structure of sentences, supporting
meaning interpretation.

• It was the first simple, successful neural dependency parser.

• The dense representations (and non-linear classifier) let it
outperform other greedy parsers in both accuracy and speed.

• This work was further developed and improved by others.

49

Dependency parsing for sentence structure

• Chen and Manning (2014) showed that neural networks can
accurately determine the structure of sentences, supporting
meaning interpretation.

• It was the first simple, successful neural dependency parser.
• The dense representations (and non-linear classifier) let it
outperform other greedy parsers in both accuracy and speed.

• This work was further developed and improved by others.

49

Dependency parsing for sentence structure

• Chen and Manning (2014) showed that neural networks can
accurately determine the structure of sentences, supporting
meaning interpretation.

• It was the first simple, successful neural dependency parser.
• The dense representations (and non-linear classifier) let it
outperform other greedy parsers in both accuracy and speed.

• This work was further developed and improved by others.

49

Further developments

This work was further developed and improved by others, including
in particular at Google.

50

Graph-based dependency parsers

• Compute a score for every possible dependency (choice of head)
for each word

• Doing this well requires more than just knowing two words
• We need good “contextual” representations of each word token

• Repeat the same process for each other word; find the best
parse

51

Graph-based dependency parsers

• Compute a score for every possible dependency (choice of head)
for each word

• Doing this well requires more than just knowing two words

• We need good “contextual” representations of each word token

• Repeat the same process for each other word; find the best
parse

51

Graph-based dependency parsers

• Compute a score for every possible dependency (choice of head)
for each word

• Doing this well requires more than just knowing two words
• We need good “contextual” representations of each word token

• Repeat the same process for each other word; find the best
parse

51

Graph-based dependency parsers

• Compute a score for every possible dependency (choice of head)
for each word

• Doing this well requires more than just knowing two words
• We need good “contextual” representations of each word token

• Repeat the same process for each other word; find the best
parse

51

A neural graph-based dependency parser

• Dozat and Manning (2017); Dozat, Qi, and Manning (2017) - This
paper revived interest in graph-based dependency parsing in a
neural world

• Designed a new scoring model (i.e., biaffine) for neural
dependency parsing

• Really great results!

• But, slower than the simple neural transition-based parsers.

52

A neural graph-based dependency parser

• Dozat and Manning (2017); Dozat, Qi, and Manning (2017) - This
paper revived interest in graph-based dependency parsing in a
neural world

• Designed a new scoring model (i.e., biaffine) for neural
dependency parsing

• Really great results!

• But, slower than the simple neural transition-based parsers.

52

A neural graph-based dependency parser

• Dozat and Manning (2017); Dozat, Qi, and Manning (2017) - This
paper revived interest in graph-based dependency parsing in a
neural world

• Designed a new scoring model (i.e., biaffine) for neural
dependency parsing

• Really great results!

• But, slower than the simple neural transition-based parsers.

52

A neural graph-based dependency parser

• Dozat and Manning (2017); Dozat, Qi, and Manning (2017) - This
paper revived interest in graph-based dependency parsing in a
neural world

• Designed a new scoring model (i.e., biaffine) for neural
dependency parsing

• Really great results!

• But, slower than the simple neural transition-based parsers.

52

Wrap-up

Wrap-up

• Syntactic structure: Consistency and dependency
• Dependency grammar and treebanks
• Dependency parsing
• Transition-based dependency parsing
• Neural dependency parsing

53

on Thursday

We will think about how to train a dependency parser on the
provided training data and generate prediction for the test set.

54

	Review
	Lesson plan
	Syntactic structure
	Dependency grammar
	Dependency parsing
	Neural dependency parsing
	Wrap-up

