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Review



Review

• GloVe
• Artificial neural network
• Perceptrons
• MLP
• Gradient descendant and loss function
• Backpropagation
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Review: GloVe

Find word vectors 𝑤⃗ice, 𝑤⃗steam such that:

(𝑤⃗ice − 𝑤⃗steam) ⋅ 𝑤⃗𝑥 ≈ log 𝑃(𝑥 ∣ ice)
𝑃 (𝑥 ∣ steam)
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Review: Perceptron
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Review: MLP

• activation function
• optimization
• algorithm
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Review: Gradient descent
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Review: Gradient descent

Gradient descent learning rule:

𝑤new = 𝑤current − 𝜂 ⋅ 𝜕𝐿
𝜕𝑤

• 𝜂: learning rate
• 𝐿: loss function
• 𝜕𝐿

𝜕𝑤 : gradient of the loss function with respect to weight
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Review: Learning rule

1. Feedforward: compute outputs
2. Loss calculation: evaluate error
3. Backpropagation: propagate errors backward
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Review: Backpropagation
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Review: Chain rule

Since this derivative cannot be computed directly, we apply the chain
rule.
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Lesson plan

• Syntactic structure: Consistency and dependency
• Dependency grammar and treebanks
• Dependency parsing
• Transition-based dependency parsing
• Neural dependency parsing
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Syntactic structure



Understanding linguistic structure

• So far, we have focused on how NLP deals with word meanings.

• But natural language understanding goes beyond individual
words.

• Linguistic structure is equally important for capturing how
words combine together to create meaning.
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Understanding linguistic structure

A grammar is the system of rules that defines how linguistic
structures are formed and how words relate to each other within a
sentence.

1. Part of Speech (POS)
2. Dependency grammar
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1. Part-of-Speech (POS)

• A word’s POS determines how it fits into a sentence.

• POS is also called lexical category.
• Main POS categories (in English):

• N___: reindeer, game, government
• V___: play, run, believe
• A___: fun, beautiful
• A___: well, heavily
• P___: on, into
• A___/D___: a, the, some
• C___: and, or
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How do we identify POS?

• Examples:

• This car is very interesting.
• This car mooked fast.
• This nony car mooked fast.

• We usually identify POS by:

• Morphology: how a word changes form (e.g., verbs mark tense:
play → played, sometimes irregularly: go → went)

• Distribution: where a word appears in a sentence (e.g., nouns after
articles, verbs after subjects)
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2. From words to phrases

• Words combine into constituents based on POS:

• the reindeer = article + noun = noun phrase
• play games = verb + noun phrase = verb phrase

• Constituents combine based on phrasal category:

• Noun Phrase + Verb Phrase = Sentence
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Structure over meaning

• Chomsky (1957): “Colorless green ideas sleep furiously”

• Nonsensical meaning, but:

• Correct lexical and phrasal categories
• Grammatically well-formed

• Syntax is about structure, not always meaning.
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Understanding linguistic structure 1: Constituency

• Constituency grammar

• A linguistic theory that analyzes sentences as nested
constituents (e.g., noun phrases, verb phrases).

• Also known as phrase structure grammar
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Frameworks for analyzing grammar

• Linguists formalize sentence structure using grammar
frameworks:

• Phrase Structure Grammar

(linguistics)
• Dependency Grammar (widely used in NLP)
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Understanding linguistic structure 2: Dependency

• Dependency grammar

• It postulates that syntactic structure consists of relationships
between lexical items, normally binary asymmetric relations
(“arrows”) called dependencies.

• Dependency structure shows which words depend on (modify,
attach to, or are arguments of) which other words.
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Why do we need dependency structure?

• Humans communicate complex ideas by composing words
together into bigger units into convey complex meanings.

• Readers/Listeners/NLP models need to work out what modifies
(attaches to) what.

• e.g., I saw the man with the telescope
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More example: Prepositional phrase attachment ambiguity
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More example: Prepositional phrase attachment ambiguity

Sourced from: https://www.bbc.com/news/science-environment-46046264
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More example: Coordination phrase attachment ambiguity

• No heart, no cognitive issues?
• No heart, but cognitive issues?
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More example: Coordination phrase attachment ambiguity

• No heart, no cognitive issues?
• No heart, but cognitive issues?
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More example: Adjectival/Adverbial modifier ambiguity
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More example: Verb phrase (VP) attachment ambiguity
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Dependency paths help extract semantic interpretation

Coming back to the example:
I saw the man with the telescope.
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Dependency grammar



Dependency grammar and dependency structure

Dependency grammar shows that syntactic structure (of a sentence)
consists of relations between lexical items, normally binary
asymmetric relations (“arrows”) called dependencies.

Sourced from: De Marneffe, M. C., & Nivre, J. (2019). Dependency grammar. Annual Review of Linguistics, 5(1), 197–218. Figure 1.

• The arrows are commonly typed with the name of grammatical
relations (subject, prepositional object, adverb, etc.)

• Usually, dependencies form a tree (a connected acyclic,
single-root graph)
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Dependency grammar vs. Constituency parsing
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Short history of dependency grammar/parsing

• The idea of dependency structures goes back a long way
• Pāṇini was an ancient Indian grammarian, active around the 4th to
6th century BCE, who authored the Aṣṭādhyāyī (”Eight Chapters”), a
formal system that systematically describes the grammar of
Classical Sanskrit.

• Basic approach to 1st millennium Arabic grammarians
• Constituency/CFG is a new-frangled invention

• 20th centry invention (R. S. Wells, 1947; Chomsky, 1953, etc.)
• Modern dependency work is often sourced to Lucien Tesnière
(1959)

• Was dominant approach in “East” in 20th century (Russia, China, ...)
• Good gor free-er word order, inflected languages

• Used in some of the earliest parsers in NLP, even in the US:
• David Hays, one of the founders of U.S. computational linguistics,
built early dependency parsers (Hays, 1962) and published on
dependency gramamr in Language
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The arise of annotated data & Universal Dependencies tree

What is a treebank? An annotated corpus that includes syntactic or
morphological structure, often in the form of parse trees.

Milestones in treebank development:

• Brown corpus (1967): First general-purpose corpus;
part-of-speech (PoS) tagged in 1979

• Lancaster-IBM treebank (Late 1980s): One of the first
syntactically annotated corpora

• The Penn treebank (Marcus et al., 1993): Influential
constituency-based treebank for English

• Universal Dependencies (UD): A multilingual, cross-linguistically
consistent treebank project using dependency grammar
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The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful
than writing a grammar (by hand)

But a treebank gives us many things:

• Reusability of the labor

• Many parser, POS taggers, and built on it
• Valuable resource for linguistics

• Broad coverage, not just a few intuitions
• Frequencies and distributional information
• A way to evaluate NLP systems (work as a benchmark for
empirical science)
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Dependency parsing



Sources of information for dependency parsing

How do we build a parser, once we get the dependency information?

What are the sources of information for dependency parsing?
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Sources of information for dependency parsing

1. Bilexical affinities
• Which word pairs typically attach? (e.g., eat → pizza)
• Use word–word statistics or embeddings to score candidate arcs.

2. Dependency distance

• Shorter arcs are preferred; long spans are penalized.
• Implement via absolute token distance or distance buckets.

3. Intervening material

• Penalize arcs that span intervening verbs or punctuation.
• Verbs and commas often mark clause/phrase boundaries.

4. Valency of heads

• Heads have typical patterns (e.g., V: subject on the left, object on
the right; P: one object to the right).

• Track how many left/right dependents are already attached to
avoid overfilling a head.
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Methods of dependency parsing

There are several ways (including dynamic programming, graph
algorithms, etc.) but we’ll focus on greedy transition-based parsing
(Nivre, 2003).
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1. Greedy transition-based parsing

Idea:

• Stack: Words that are being processed (“currently thinking about
these”)

• Buffer: Words yet to be processed (“still to come”)
• Transitions: Actions that manipulate the stack and build
syntactic relationships

• Regulation (ROOT):

• ROOT can never be a dependent.
• Exactly one root arc per sentence: root(ROOT, sentential head).
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syntactic relationships

• Regulation (ROOT):
• ROOT can never be a dependent.
• Exactly one root arc per sentence: root(ROOT, sentential head).

36



1. Greedy transition-based parsing

Formal definition:

• 𝜎: Stack, 𝛽: Buffer, 𝐴: Set of dependency arcs
• Initial state: 𝜎 = [ROOT], 𝛽 = [𝑤1, ..., 𝑤𝑛], 𝐴 = ∅
• Goal: Build all arcs and finish when 𝜎 = [𝑤], 𝛽 = ∅

Transitions (can choose one of three actions):

• Shift: (𝜎, 𝑤𝑖|𝛽, 𝐴) ⇒ (𝜎|𝑤𝑖, 𝛽, 𝐴)
• Left-Arc𝑟: (𝜎|𝑤𝑖|𝑤𝑗, 𝛽, 𝐴) ⇒ (𝜎|𝑤𝑗, 𝛽, 𝐴 ∪ {𝑟(𝑤𝑗, 𝑤𝑖)})
• Right-Arc𝑟: (𝜎|𝑤𝑖|𝑤𝑗, 𝛽, 𝐴) ⇒ (𝜎|𝑤𝑖, 𝛽, 𝐴 ∪ {𝑟(𝑤𝑖, 𝑤𝑗)})
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Greedy transition-based parsing: Example

Sentence: I saw him

Initial State: Stack = [ROOT], Buffer = [I, saw, him], Arcs = {}

Step Stack Buffer Transition New Arc
1 [ROOT] [I, saw, him] SHIFT —
2 [ROOT, I] [saw, him] SHIFT —
3 [ROOT, I, saw] [him] LEFT-ARC saw → I (subj)
4 [ROOT, saw] [him] SHIFT —
5 [ROOT, saw, him] [ ] RIGHT-ARC saw → him (obj)
6 [ROOT, saw] [ ] RIGHT-ARC ROOT → saw (root)
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MaltParser (Nivre and Hall, 2005)

• Problem: How do we choose the next parsing action?

• Answer: Stand back — I know machine learning! Train a classifier
that learns to predict the best transition at each step in a greedy
dependency parser.

• Each transition is predicted by a multi-class classifier (e.g.,
softmax or perceptron) over the set of legal moves.

• Trained features: Top word on the stack (and its POS tag), First
word in the buffer (and its POS tag), Arc history, etc.
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MaltParser (Nivre and Hall, 2005)

• There is no search in the simplest form — because it uses a
greedy algorithm

• At each step, the parser selects the single best-scoring action and
commits to it immediately.

• No backtracking or consideration of alternatives.
• But you can profitably use beam search for better accuracy (at
the cost of speed):

• Keep the top 𝑘 highest-scoring partial parses at each step (beam
width = 𝑘)

• Allows recovery from early mistakes by exploring multiple
promising paths.

• The model’s accuracy is fractionally below the state of the art in
dependency parsing, but it provides very fast linear time
parsing, with high accuracy.
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Evaluation

Gold Standard: Hand-annotated syntactic structure used for
evaluating parser output.

Metrics: (1) UAS (Unlabeled Attachment Score): Correct head only; (2)
LAS (Labeled Attachment Score): Correct head and label

Example:

Word Gold Head Gold Label Pred Head Pred Label
She 2 nsubj 2 nsubj
likes 0 root 0 root

chocolate 2 obj 2 nmod
very 4 advmod 4 advmod
much 2 advmod 4 advmod

Evaluation:

• Total dependencies: 5
• Correct heads (UAS): 4 → UAS = 4/5 = 80%
• Correct heads + labels (LAS): 3 → LAS = 3/5 = 60%
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Neural dependency parsing



How do we gain from a neural dependency parser?

Indicator features revisited

• Sparsity: handcrafted feature templates generate very
high‐dimensional but rarely observed indicators (cf. one-hot
encoding)

• Incomplete coverage: cannot anticipate every useful
combination of word, POS, or context

• Engineering cost: manual feature design and extraction
pipelines add development overhead

• Runtime overhead: expensive lookups and feature‐template
evaluations slow parsing

Neural approach: Dense and compact Representations
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Neural approach: Dense and compact Representations

• Exactly the same parser configuration is used (e.g., top elements
of the stack, front elements of the buffer, and relevant
dependency arcs);

– Instead of hand-crafted binary features, we summarize these
elements into a single continuous “configuration vector.”

• Neural approach: the model learns this dense configuration
automatically
– Embedding layers map words, POS tags, and arc labels into
low-dimensional vectors, which are concatenated to represent
the parser state.
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A neural dependency parser (Chen & Manning, 2014)

• Review: Distributed representations
• Represent each word as a d-dimensional dense vector (i.e., word
embedding)

• Similar words are expected to have close vectors
• Meanwhile, POS and dependency labels are also represented as
d-dimensional vectors

• The similar discrete sets also exhibit many semantical similarities.
• e.g., NNS (plural noun) should be close to NN (singular noun);
nummod (numerical modifier) should be close to amod (adjective
modifier).
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Extracting tokens and vector representations from configuration

We can extract a set of tokens based on stack/buffer positions

A concatenation of the vector representation of all these is the
neural representation of configuration. 45



Deep learning classifiers are non-linear classifiers

• A softmax classifier assigns classes 𝑦 ∈ 𝐶 based on inputs
𝑥 ∈ ℝ𝑑 via

𝑝(𝑦 ∣ 𝑥) = exp(𝑊𝑦 ⋅ 𝑥)
𝐶

∑
𝑐=1

exp(𝑊𝑐 ⋅ 𝑥)
.

• We train the weight matrix 𝑊 ∈ ℝ𝐶×𝑑 by minimizing the negative
log‐likelihood (i.e., cross entropy loss):
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Review: Neural networks are more powerful

• Traditional ML classifiers (Naïve Bayes, SVMs, logistic regression,
softmax) only produce linear decision boundaries.

• Review: Neural networks (with multiple hidden layers) can learn
much more complex, nonlinear decision boundaries.

• In the original input space, the boundary may look nonlinear.
But after the hidden layers transform the data, the final softmax
layer only needs a simple linear classifier to separate the
classes.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Simple feed-forward neural network multi-class classifier

Model architecture
Input: 𝑥 = [… , embed(𝑤𝑖−1), embed(𝑤𝑖), embed(𝑤𝑖+1), … ]
Hidden: ℎ = ReLU(𝑊𝑥 + 𝑏1)
Output: 𝑦 = softmax(𝑈ℎ + 𝑏2)

Training objective (cross-entropy loss) back-propagated

ℒ = − ∑
𝑖

log 𝑝(𝑦(𝑖) ∣ 𝑥(𝑖))
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Dependency parsing for sentence structure

• Chen and Manning (2014) showed that neural networks can
accurately determine the structure of sentences, supporting
meaning interpretation.

• It was the first simple, successful neural dependency parser.
• The dense representations (and non-linear classifier) let it
outperform other greedy parsers in both accuracy and speed.

• This work was further developed and improved by others.
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Further developments

This work was further developed and improved by others, including
in particular at Google.
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Graph-based dependency parsers

• Compute a score for every possible dependency (choice of head)
for each word

• Doing this well requires more than just knowing two words
• We need good “contextual” representations of each word token

• Repeat the same process for each other word; find the best
parse
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A neural graph-based dependency parser

• Dozat and Manning (2017); Dozat, Qi, and Manning (2017) - This
paper revived interest in graph-based dependency parsing in a
neural world

• Designed a new scoring model (i.e., biaffine) for neural
dependency parsing

• Really great results!

• But, slower than the simple neural transition-based parsers.
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Wrap-up



Wrap-up

• Syntactic structure: Consistency and dependency
• Dependency grammar and treebanks
• Dependency parsing
• Transition-based dependency parsing
• Neural dependency parsing
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on Thursday

We will think about how to train a dependency parser on the
provided training data and generate prediction for the test set.
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